GENERALITES SUR LES SUITES

. Notion de suite

Exo1: pour chaque suite donnée, calculer les termes de rang 0, 1, 2, 3 et 100

$$1) \quad \mathbf{U}_n = \frac{\mathbf{n} + 2}{\mathbf{n} + 3}$$

1)
$$U_n = \frac{n+2}{n+3}$$
 2) $U_n = \cos \frac{\pi n}{2}$ 3) $U_n = (-1)^n$

$$3) \quad \mathbf{U}_n = \left(-1\right)^n$$

$$4) \quad \mathbf{U}_n = 2^n + 1$$

4)
$$U_n = 2^n + 1$$
 5) $U_n = 1 - \left(-\frac{1}{2}\right)^n$

Exo2 : pour chaque suite donnée, calculer, en fonction de n, les termes :

$$\mathbf{U}_{n-1} \ ; \ \mathbf{U}_{n+1} \ ; \ \mathbf{U}_{n+2} \ ; \ \mathbf{U}_{3n} \ ; \ \mathbf{U}_{3n-1}$$

1)
$$U_n = \frac{5}{n}$$

1)
$$U_n = \frac{5}{n}$$
 2) $U_n = \frac{2n-1}{n+2}$ 3) $U_n = (-2)^n + 1$

3)
$$U_n = (-2)^n + 1$$

$$4) \quad \mathbf{U}_n = n^2 + r^2$$

4)
$$U_n = n^2 + n$$
 5) $U_n = \left(-\frac{1}{2}\right)^n + 5$

Exo3: chaque suite (U_n) est définie par $U_0 = 1$ et par une relation de récurrence calculer U₁, U₂, U₃, U₄

1)
$$U_{n+1} = 2U_n + 1$$

2)
$$U_{n+1} = \frac{5 + U_n}{2 - U_n}$$

3)
$$U_{n+1} = \sqrt{U_n + 3}$$

4)
$$U_{n+1} = \cos U_n$$
 (en radians)

. Représentation graphique

Exo4: représenter graphiquement les cinq premiers termes de la suite (U_n) définie par $U_n = 2n-5$

Exo5: soit la suite (U_n) définie par : $U_0 = \frac{3}{4}$ et $U_{n+1} = U_n^2$

- 1) dans un repère orthonormal (O ; $\overrightarrow{\iota}$; \overrightarrow{J}), tracer la courbe représentative C $_f$ de la fonction $f: x \mapsto x^2$ et tracer la droite d d'équation y = x
- 2) représenter graphiquement les quatre premiers termes de la suite (U_n) .

. Variations de la suite (U_n)

conseil: bien relire la remarque pratique du cours, et ne pas oublier que n est un entier naturel

 $\underline{\mathbf{Exo6}}$: étudier le sens de variation des suites (\mathbf{U}_n) définies par :

$$1) \quad \mathbf{U}_n = n^2 - 1$$

1)
$$U_n = n^2 - 1$$
 2) $U_n = \frac{3}{2n - 1}$ 3) $U_n = 1 - \sqrt{n}$

3)
$$U_n = 1 - \sqrt{r}$$

4)
$$U_n = \frac{5^n}{4^{n+1}}$$
 5) $U_n = (-2)^n$

$$5) \quad \mathbf{U}_n = \left(-2\right)^n$$

. Propriétés éventuelles de (U_n)

Exo7: soit (U_n) la suite définie par U_n = $\frac{2n+5}{n+1}$

- 1) étudier le sens de variation de (U_n)
- 2) en déduire que (U_n) est majorée

Exo8: soit (U_n) la suite définie par $U_n = \frac{n}{2} + \frac{8}{n}$

- 1) déterminer une fonction f définie sur $]0;+\infty[$ par $f(n)=U_n$
- 2) étudier la fonction f sur $]0;+\infty[$
- 3) la suite (U_n) est-elle monotone ? majorée ? minorée ?

Exo9 : la suite (U_n) définie par $U_n = \cos \frac{2n\pi}{5}$ est -elle périodique ? si oui, préciser sa période

. Démonstration par récurrence

Exo10: soit la suite (U_n) définie par : $U_0 = 0$ et, pour tout $n \in \mathbb{N}$: $U_{n+1} = \frac{1}{2}U_n + 2$

- 1) démontrer par récurrence que (U_n) est majorée par 4 et minorée par 0
- 2) démontrer par récurrence que (U_n) est croissante

conseil : relire attentivement le principe de la démonstration, et soigner la rédaction

. Limite d'une suite

Exo11: voici des suites ; quelles sont les suites convergentes ? donner leur limite

$$U_n = n^2 - 1$$
 ; $V_n = \frac{-2}{n^2 + 1}$; $W_n = \frac{1}{n^2} + 5$;

$$T_n = \frac{\sin n}{n}$$
 ; $X_n = \sqrt{2n+1}$; $Y_n = \frac{3n+2}{n+5}$

<u>conseil</u>: une suite est dite convergente lorsqu'elle admet une limite <u>finie</u>

SUITES PARTICULIERES

. Suites arithmétiques

conseil: bien relire la remarque pratique du cours

Exo1: 1) soit (U_n) une suite arithmétique de raison 5 et avec $U_0 = -2$; calculer U_{20}

2) soit (U_n) une suite arithmétique telle que $U_{35} = 245$ et $U_{45} = 315$; calculer U_{41}

Exo2: on considère les deux suites (U_n) et (V_n) définies par $U_n = n+7$ et $V_n = \frac{1}{2} + 3n$ préciser pourquoi (U_n) et (V_n) sont arithmétiques quels en sont le premier terme et la raison?

Exo3: soit (U_n) la suite définie par : $U_0 = 1$ et, pour tout $n \in \mathbb{N}$: $2U_{n+1} = 2U_n + 1$

- 1) montrer que (U_n) est arithmétique
- 2) déterminer U_n en fonction de n
- 3) calculer $S_n = U_4 + U_5 + + U_n$, et déterminer la valeur de n telle que $S_n = 168$

Exo4: soit (U_n) la suite définie par : $U_0 = 1$ et, pour tout $n \in \mathbb{N}$: $U_{n+1} = \frac{U_n}{2U_n + 1}$

- 1) on pose, pour tout $n \in \mathbb{N}$: $V_n = \frac{1}{U_n}$
- a) montrer que (V_n) est arithmétique
- b) en déduire une expression de U_n en fonction de n
- 2) quelle est la limite de V_n quand n tend vers $+\infty$? en déduire la limite de U_n quand n tend vers $+\infty$

. Suites géométriques

conseil: bien relire la remarque pratique du cours

Exo5: 1) soit (U_n) une suite géométrique de raison q = 3 avec $U_0 = -1$; calculer U_5 et U_7 .

- 2) soit (U_n) une suite géométrique telle que $\,{\rm U}_4=48\,{\rm et}\,\,{\rm U}_8=3\,$; calculer $\,{\rm U}_0\,{\rm et}\,\,{\rm q}$, lorsque ${\rm q}>0$
- 3) soit (U_n) une suite géométrique telle que $U_5 = 17$ et q = 4; calculer $U_5 + U_6 + ... U_{13}$

Exo6: on considère les deux suites (U_n) et (V_n) définies par : $U_n = \frac{5}{2^n}$ et $\begin{cases} V_0 = 4 \\ V_{n+1} = V_n - \frac{1}{3}V_n \end{cases}$ préciser pourquoi (U_n) et (V_n) sont géométriques quels en sont le premier terme et la raison ?

 $\underline{\mathbf{Exo7}}$: étudier la limite de la suite (\mathbf{U}_n) définie par la donnée explicite de \mathbf{U}_n

1)
$$U_n = \left(\frac{1}{3}\right)^n$$
 2) $U_n = \left(\frac{\sqrt{5}}{2}\right)^n$ 3) $U_n = \frac{1}{1+2^n}$

Exo8 : on considère la suite (\mathbf{U}_n) définie par : $\begin{cases} \mathbf{U}_0 \\ \mathbf{U}_{n+1} = \frac{1}{3}\mathbf{U}_n + 2 \end{cases}$

- 1) on suppose $U_0 = 3$ calculer U_1 puis U_n pour tout $n \ge 1$ que peut-on en déduire sur la suite (U_n) ?
- 2) on suppose $U_0 = 2$, et on définit la suite (V_n) par : $V_n = U_n 3$, pour tout $n \in \mathbb{N}$ montrer que (V_n) est une suite géométrique de raison $q = \frac{1}{3}$
- 3) exprimer U_n en fonction de n en déduire que $\left(U_n\right)$ est convergente et calculer sa limite

4) exprimer en fonction de n la somme $S_n : S_n = U_0 + U_1 + ... + U_n$

. Problème de mathématique financière

Exo9: on place un capital C_0 de 10 000 euros au taux annuel de 6%.

- 1) les intérêts sont simples soit (U_n) la suite représentant la somme disponible au bout de n années
 - a) montrer que (U_n) est arithmétique ; on précisera son premier terme et sa raison
 - b) exprimer U_n en fonction de n
 - c) calculer U₁₀ et U₁₂
- 2) les intérêts sont composés soit (C_n) la suite représentant la somme disponible au bout de n années
 - a) montrer que (C_n) est géométrique ; on précisera son premier terme et sa raison
 - b) exprimer C_n en fonction de n
 - c) calculer C_{10} et C_{12} , puis les comparer à U_{10} et U_{12}
- <u>conseil</u>: quand les intérêts sont simples, les intérêts I produits chaque année sont calculés sur le capital initial: $I=C_0\times 6\%$
 - . quand les intérêts sont composés, les intérêts acquis sont chaque année intégrés au capital et produisent à leur tour des intérêts ; et augmenter de 6% revient à multiplier par $1 + \frac{6}{100}$

CORRIGE réalisé par M. QUET CENERALITES SUR LES SUITES

. Notion de suite

$$\frac{1}{\text{Exol}} : 1) \ U_n = \frac{n+2}{n+3} \Rightarrow \quad U_0 = \frac{0+2}{0+3} = \frac{2}{3} \quad , \qquad U_1 = \frac{1+2}{1+3} = \frac{3}{4} \quad , \qquad U_2 = \frac{2+2}{2+3} = \frac{4}{5} \quad , \qquad U_3 = \frac{3+2}{3+3} = \frac{5}{6} \quad , \qquad U_{100} = \frac{100+2}{100+3} = \frac{102}{103}$$

$$2) \ U_n = \cos \frac{\pi n}{2} \Rightarrow \quad U_0 = \cos \frac{\pi \times 2}{2} = 1 \quad , \qquad U_1 = \cos \frac{\pi \times 1}{2} = 0 \quad , \qquad U_2 = \cos \frac{\pi \times 2}{2} = -1 \quad , \qquad U_3 = \cos \frac{\pi \times 3}{2} = 0 \quad , \qquad U_{100} = \cos \frac{\pi \times 100}{2} = \cos 50\pi = \cos (25 \times 2\pi) = 0$$

$$3) \ U_n = (-1)^n \Rightarrow \quad U_0 = (-1)^0 = 1 \quad , \qquad U_1 = (-1)^1 = -1 \quad , \qquad U_2 = (-1)^2 = 1 \quad , \qquad U_3 = (-1)^3 = -1 \quad \quad U_{100} = (-1)^{100} = 1$$

$$4) \ U_n = 2^n + 1 \Rightarrow \quad U_0 = 2^0 + 1 = 1 \quad , \qquad U_1 = 2^1 + 1 = 3 \quad , \qquad U_2 = 2^2 + 1 = 5 \quad \quad U_3 = 2^3 + 1 = 9 \quad , \qquad U_{100} = 2^{100} + 1$$

$$5) \ U_n = 1 - \left(-\frac{1}{2}\right)^n \Rightarrow \quad U_0 = 1 - \left(-\frac{1}{2}\right)^0 = 0 \quad , \qquad U_1 = 1 - \left(-\frac{1}{2}\right)^1 = 1 + \frac{1}{2} = \frac{3}{2} \quad \quad U_2 = 1 - \left(-\frac{1}{2}\right)^{2} = 1 - \frac{1}{4} = \frac{3}{4} \quad , \qquad U_3 = 1 - \left(-\frac{1}{2}\right)^3 = 1 + \frac{1}{8} = \frac{9}{8} \quad , \qquad U_{100} = 1 - \left(-\frac{1}{2}\right)^{100} = 1 - \frac{1}{2^{100}} = 1 - \frac{1}{2$$

$$U_{3n-1} = \left(-\frac{1}{2}\right)^{3n-1} + 5 = -2\left(-\frac{1}{8}\right)^{n} + 5$$

Exo3: 1)
$$U_{n+1} = 2U_n + 1 \rightarrow U_1 = 2U_0 + 1 = 2 \times 1 + 1 = 3$$

$$U_1 = 2U_0 + 1 = 2 \times 1 + 1 = 3$$

$$U_3 = 2U_2 + 1 = 2 \times 7 + 1 = 15$$
 $U_4 = 2U_3 + 1 = 2 \times 15 + 1 = 31$

2)
$$U_{n+1} = \frac{5 + U_n}{2 - U_n} \rightarrow$$

2)
$$U_{n+1} = \frac{5 + U_n}{2 - U_n}$$
 \rightarrow $U_1 = \frac{5 + U_0}{2 - U_0} = \frac{5 + 1}{2 - 1} = 6$

$$U_3 = \frac{5 + U_2}{2 - U_2} = \frac{5 - \frac{11}{4}}{2 + \frac{11}{4}} = \frac{9}{19}$$

3)
$$U_{n+1} = \sqrt{U_n + 3}$$

3)
$$U_{n+1} = \sqrt{U_n + 3} \implies U_1 = \sqrt{U_0 + 3} = \sqrt{1 + 3} = 2$$

$$U_3 = \sqrt{U_2 + 3} = \sqrt{\sqrt{5} + 3}$$

4)
$$U_{n+1} = \cos U_n \rightarrow U_1 = \cos U_0 = \cos 1$$

$$U_1 = \cos U_0 = \cos 1$$

$$U_3 = \cos U_2 = \cos \left[\cos (\cos 1)\right]$$

$$U_2 = 2U_1 + 1 = 2 \times 3 + 1 = 7$$

$$U_4 = 2U_3 + 1 = 2 \times 15 + 1 = 31$$

$$U_2 = \frac{5 + U_1}{2 - U_1} = \frac{5 + 6}{2 - 6} = -\frac{11}{4}$$

$$U_{3} = \frac{5 + U_{2}}{2 - U_{2}} = \frac{5 - \frac{11}{4}}{2 + \frac{11}{4}} = \frac{9}{19}$$

$$U_{4} = \frac{5 + U_{3}}{2 - U_{3}} = \frac{5 + \frac{9}{19}}{2 - \frac{9}{19}} = \frac{104}{29}$$

$$U_2 = \sqrt{U_1 + 3} = \sqrt{2 + 3} = \sqrt{5}$$

$$U_4 = \sqrt{U_3 + 3} = \sqrt{\sqrt{5 + 3} + 3}$$

$$U_2 = \cos U_1 = \cos(\cos 1)$$

$$U_3 = \cos U_2 = \cos \left[\cos \left(\cos 1\right)\right]$$
 $U_4 = \cos U_3 = \cos \left(\cos \left(\cos 1\right)\right)$

. Représentation graphique

Exo4: on a: $U_n = 2n - 5$

donc:
$$U_0 = 2 \times 0 - 5 = -5$$
, $U_1 = 2 \times 1 - 5 = -3$,

$$U_1 = 2 \times 1 - 5 = -3$$

$$U_2 = 2 \times 2 - 5 = -$$

$$U_2 = 2 \times 2 - 5 = -1$$
 $U_3 = 2 \times 3 - 5 = 1$,

$$U_4 = 2 \times 4 - 5 = 3$$

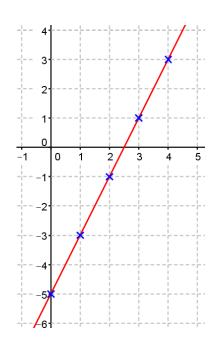
ainsi dans un repère $(O; \vec{i}; \vec{j})$, les cinq premiers termes de (U_n) sont représentés par :

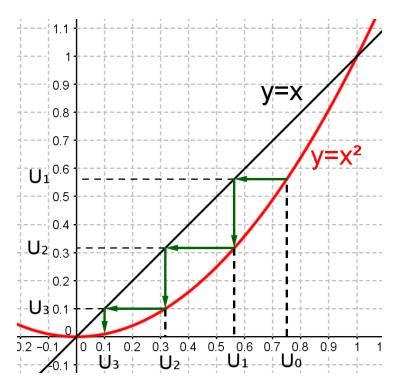
$$\left(0; \mathbf{U}_{0}\right), \left(1; \mathbf{U}_{1}\right), \left(2; \mathbf{U}_{2}\right), \left(3; \mathbf{U}_{3}\right), \left(4; \mathbf{U}_{4}\right)$$

soit:
$$(0;-5)$$
, $(1;-3)$, $(2;-1)$, $(3;1)$, $(4;3)$

d'où:

Exo5: soit la suite (U_n) définie par : $U_0 = \frac{3}{4}$ et $U_{n+1} = U_n^2$





. Variations de la suite (U_n)

$$Exo6$$
: 1) $U_n = n^2 - 1$

$$→ U_{n+1} - U_n = ((n+1)^2 - 1) - (n^2 - 1) = (n^2 + 2n + 1 - 1) - (n^2 - 1) = n^2 + 2n + 1 - 1 - n^2 + 1 = 2n + 1$$
or $n ∈ \mathbb{N}$ d'où $2n + 1 > 0$ soit : $U_{n+1} - U_n > 0$ ainsi (U_n) est croissante.

- 2) Soit f la fonction définie sur $\left] -\frac{1}{2}; +\infty \right[$ par $f(x) = \frac{3}{2x-1}$ f est décroissante sur $\left] -\frac{1}{2}; +\infty \right[$ (car 3 > 0) et $U_n = f(n)$ ainsi (U_n) est décroissante.
- 3) $U_{n+1} U_n = (1 \sqrt{n+1}) (1 \sqrt{n}) = \sqrt{n} \sqrt{n+1}$ or $n \in \mathbb{N}$ d'où $\sqrt{n} < \sqrt{n+1}$ et $U_{n+1} - U_n < 0$ ainsi (U_n) est décroissante.
- 4) (U_n) est une suite de termes positifs, et $\frac{U_{n+1}}{U_n} = \frac{5^{n+1}}{4^{n+2}} \times \frac{4^{n+1}}{5^n} = \frac{5}{4}$ donc $\frac{U_{n+1}}{U_n} > 1$ et $U_{n+1} > U_n$ ainsi (U_n) est croissante.
- 5) $U_{n+1} U_n = (-2)^{n+1} (-2)^n = (-2)^n [(-2) 1] = -3(-2)^n$ le signe de $U_{n+1} U_n$ dépend de la parité de n ainsi (U_n) n'est ni croissante ni décroissante

. Propriétés éventuelles de (U_n)

Exo7: 1)
$$U_{n+1} - U_n = \frac{2(n+1)+5}{(n+1)+1} - \frac{2n+5}{n+1} = \frac{2n+7}{n+2} - \frac{2n+5}{n+1} = \frac{(2n+7)(n+1)}{(n+2)(n+1)} - \frac{(2n+5)(n+2)}{(n+1)(n+2)}$$

$$U_{n+1} - U_n = \frac{2n^2 + 2n + 7n + 7}{(n+2)(n+1)} - \frac{2n^2 + 4n + 5n + 10}{(n+1)(n+2)} = \frac{-3}{(n+1)(n+2)}$$
ainsi $U_{n+1} - U_n < 0$ et (U_n) est décroissante.

2)
$$(U_n)$$
 étant décroissante, on a, pour tout $n \in \mathbb{N}$: $U_n \le U_0$ or $U_0 = 5$ donc (U_n) est majorée par 5.

Exo8: 1) soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{x}{2} + \frac{8}{x}$, ainsi: $U_n = f(n)$

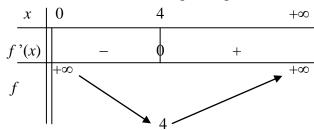
2) f est dérivable sur $]0; +\infty[$ et , pour tout $x \in]0; +\infty[$:

$$f'(x) = \frac{1}{2} - \frac{8}{x^2} = \frac{x^2}{2x^2} - \frac{16}{2x^2} = \frac{x^2 - 16}{2x^2} = \frac{(x+4)(x-4)}{2x^2}$$

or sur $]0;+\infty[$: $2x^2>0$ et x+4>0 , aussi le signe de f '(x) dépend du signe de x-4 :

$$f'(x) \ge 0 \iff x \ge 4$$
 et $f'(x) \le 0 \iff x \le 4$

donc f est croissante sur $[4;+\infty[$ et f est décroissante sur]0;4]



3) . on a: $U_n = f(n)$

d'où, à partir du rang n = 4, la suite (U_n) est croissante

. on a : $\lim_{x \to +\infty} f(x) = +\infty$, donc (U_n) ne peut pas être majorée

.
$$U_1 = \frac{17}{2}$$
, $U_2 = 5$, $U_3 = \frac{25}{6}$ et $(U_n)_{n \ge 4}$ est croissante.

donc, pour tout $n \ge 4$, $U_n > U_4$ donc $(U_n)_{n \ge 4}$ est minorée par 4.

Exo9: on a:
$$U_{n+5} = \cos \frac{2(n+5)\pi}{5} = \cos \frac{2n\pi + 10\pi}{5} = \cos \left(\frac{2n\pi}{5} + 2\pi\right) = \cos \frac{2n\pi}{5} = U_n$$

donc la suite (U_n) est périodique de période 5.

. Démonstration par récurrence

Exo10: 1) montrons par récurrence que , pour tout $n \in \mathbb{N}$: $0 \le U_n \le 4$

- . Initialisation : on a : $U_0 = 0$, d'où $0 \le U_0 \le 4$
- . Hérédité : supposons que, pour n fixé au hasard dans $\mathbb N$, on ait : $0 \le U_n \le 4$ Regardons alors si $0 \le U_{n+1} \le 4$

par hypothèse de récurrence, on a : $0 \le U_n \le 4$

$$0 \le \frac{1}{2} \mathbf{U}_n \le 2$$

$$2 \le \frac{1}{2} \mathbf{U}_n + 2 \le 4$$

$$2 \le U_{n+1} \le 4$$

. conclusion : $(\boldsymbol{U_n})$ est minorée par 0 et majorée par 4.

- 2) montrons par récurrence que, pour tout $n \in \mathbb{N} : U_n \le U_{n+1}$
 - . Initialisation : on a : $U_0 = 0$ et $U_1 = 2$, d'où $U_0 \le U_1$

. Hérédité : supposons que, pour n fixé au hasard dans $\mathbb N$, on ait : $\mathbf U_n \leq \mathbf U_{n+1}$ regardons alors si : $\mathbf U_{n+1} \leq \mathbf U_{n+2}$ par hypothèse de récurrence, on a : $\mathbf U_n \leq \mathbf U_{n+1}$ $\frac{1}{2} \mathbf U_n \leq \frac{1}{2} \mathbf U_{n+1}$ $\frac{1}{2} \mathbf U_n + 2 \leq \frac{1}{2} \mathbf U_{n+1} + 2$ $\mathbf U_{n+1} \leq \mathbf U_{n+2}$

. conclusion : (U_n) est croissante

. Limite d'une suite

Exol1: $U_n = n^2 - 1$: on a: $\lim_{n \to +\infty} n^2 = +\infty$ donc $\lim_{n \to +\infty} U_n = +\infty$: (U_n) ne converge pas

.
$$V_n = \frac{-2}{n^2 + 1}$$
: on a: $\lim_{n \to +\infty} n^2 + 1 = +\infty$ donc $\lim_{n \to +\infty} V_n = 0$: (V_n) converge vers 0

•
$$W_n = \frac{1}{n^2} + 5$$
: on a: $\lim_{n \to +\infty} \frac{1}{n^2} = 0$ donc $\lim_{n \to +\infty} W_n = 5$: (W_n) converge vers 5

•
$$T_n = \frac{\sin n}{n}$$
: on a : pour tout $n \in \mathbb{N}$: $-1 \le \sin n \le 1$ d'où : $\frac{-1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$

or:
$$\lim_{n \to +\infty} \frac{1}{n} = \lim_{n \to +\infty} -\frac{1}{n} = 0$$

donc, d'après le théorème des gendarmes, (T_n) converge et $\lim_{n \to +\infty} T_n = 0$

.
$$X_n = \sqrt{2n+1}$$
: $\lim_{n \to +\infty} X_n = +\infty$: (X_n) ne converge pas

•
$$Y_n = \frac{3n+2}{n+5}$$
: on a: $\frac{3n+2}{n+5} = \frac{n\left(3+\frac{2}{n}\right)}{n\left(1+\frac{5}{n}\right)} = \frac{3+\frac{2}{n}}{1+\frac{5}{n}}$ or: $n \to +\infty$ $\frac{2}{n} = \lim_{n \to +\infty} \frac{5}{n} = 0$

d'où : $\lim_{n \to +\infty} Y_n = 3$: (Y_n) converge vers 3

SUITES PARTICULIERES

. Suites arithmétiques

Exo1: 1) (U_n) une suite arithmétique donc : $U_{20} = U_0 + 20r = -2 + 20 \times 5 = 98$

2)
$$(U_n)$$
 une suite arithmétique donc : $U_{45} = U_{35} + 10r \iff 315 = 245 + 10r \iff r = \frac{70}{10} = 7$
 $U_{41} = U_{45} - 4r = 315 - 4 \times 7 = 287$

$$V_n = \frac{1}{2} + 3n : \text{ on a : } V_{n+1} - V_n = \left(\frac{1}{2} + 3(n+1)\right) - \left(\frac{1}{2} + 3n\right) = 3n + 3 - 3n = 3 \text{ , d'où : } V_{n+1} = V_n + 3n = 3$$

Exo3: 1)
$$2U_{n+1} = 2U_n + 1$$
 d'où: $U_{n+1} = U_n + \frac{1}{2}$

ainsi (U_n) est une suite arithmétique de raison $\mathbf{r} = \frac{1}{2}$ et de premier terme $U_0 = 1$

2) d'après la définition 2 du cours, on a :
$$U_n = U_0 + nr = 1 + \frac{n}{2}$$

3) de
$$U_4$$
 à U_n , il y a $(n-3)$ termes, d'où : $S_n = U_4 + U_5 + + U_n = \frac{n-3}{2} \left(U_4 + U_n \right)$ or : $U_4 = 3$ donc : $S_n = U_4 + U_5 + + U_n = \frac{n-3}{2} \left(3 + 1 + \frac{n}{2} \right) = \frac{n-3}{2} \times \frac{n+8}{2} = \frac{(n-3)(n+8)}{2}$ de $S_n = 168$ équivaut à $\frac{(n-3)(n+8)}{4} = 168$ soit : $n^2 + 5n - 696 = 0$

le discriminant de ce trinôme est $\Delta = 53^2 > 0$

le trinôme admet donc deux racines réelles distinctes :

$$n_1 = \frac{-5 - 53}{2} = -28 \notin \mathbb{N}$$
 et $n_2 = \frac{-5 + 53}{2} = 24 \in \mathbb{N}$

donc $S_n = 168 \text{ pour } \mathbf{n} = 24$

Exo4: 1) a)
$$V_{n+1} = \frac{1}{U_{n+1}} = \frac{2U_n + 1}{U_n} = 2 + \frac{1}{U_n} = 2 + V_n$$
 soit $V_{n+1} = V_n + 2$

donc (V_n) est une suite arithmétique de raison $\mathbf{r} = \mathbf{2}$ et de premier terme $V_0 = \frac{1}{U_0} = 1$

b) on a:
$$V_n = V_0 + nr = 1 + 2n$$

or: $U_n = \frac{1}{V_n}$ d'où: $U_n = \frac{1}{1 + 2n}$

2)
$$\lim_{n \to +\infty} V_n = \lim_{n \to +\infty} 1 + 2n = +\infty$$
 donc : $\lim_{n \to +\infty} U_n = \lim_{n \to +\infty} \frac{1}{V_n} = 0$

. Suites géométriques

Exo5: 1) on a:
$$U_5 = U_0 \times q^5 = -3^5 = -343$$
, $U_7 = U_5 \times q^2 = -343 \times 3^2 = -2187$

2) on a:
$$U_8 = U_4 \times q^4 \iff 3 = 48 \times q^4 \iff q^4 = \frac{1}{16} \iff q^4 = \frac{1}{2}$$

$$U_4 = U_0 \times q^4 \iff 48 = U_0 \times \left(\frac{1}{2}\right)^4 \iff 48 = U_0 \times \frac{1}{16} \iff U_0 = 16 \times 48 = 768$$

3) la somme $U_5 + U_6 + ... U_{13}$ comporte 9 termes

d'où:
$$U_5 + U_6 + ... U_{13} = U_5 \times \frac{1 - q^9}{1 - q} = 17 \times \frac{1 - 4^9}{1 - 4} = \frac{17}{3} (4^9 - 1) = 1485477$$

Exo6:
$$U_n = \frac{5}{2^n}$$
: on a: $\frac{U_{n+1}}{U_n} = \frac{5}{2^{n+1}} \times \frac{2^n}{5} = \frac{1}{2}$

donc (U_n) est une suite géométrique de raison $q = \frac{1}{2}$ et de premier terme $U_0 = 5$

$$\begin{cases} V_0 = 4 \\ V_{n+1} = V_n - \frac{1}{3}V_n \end{cases} : \text{ on a : } V_{n+1} = \frac{2}{3}V_n$$

donc (V_n) est une suite géométrique de raison $q = \frac{2}{3}$ et de premier terme $V_0 = 4$

Exo7: 1) $U_n = \left(\frac{1}{3}\right)^n : (U_n)$ est une suite géométrique de raison $q = \frac{1}{3}$ or 0 < q < 1 donc $\lim_{n \to +\infty} U_n = 0$

2)
$$U_n = \left(\frac{\sqrt{5}}{2}\right)^n$$
: (U_n) est une suite géométrique de raison $q = \frac{\sqrt{5}}{2}$

Or q > 1 donc: $\lim_{n \to +\infty} U_n = +\infty$

3)
$$U_n = \frac{1}{1+2^n}$$
: $2 > 1$ donc $\lim_{n \to +\infty} 2^n = +\infty$ et $\lim_{n \to +\infty} 1 + 2^n = +\infty$ donc: $\lim_{n \to +\infty} U_n = 0$

 $\mathbf{Exo8}: \begin{cases} \mathbf{U}_0 \\ \mathbf{U}_{n+1} = \frac{1}{3}\mathbf{U}_n + 2 \end{cases}$

1) si
$$U_0 = 3$$
, alors: $U_1 = \frac{1}{3}U_0 + 2 = \frac{1}{3} \times 3 + 2 = 3$, puis: $U_2 = \frac{1}{3}U_1 + 2 = \frac{1}{3} \times 3 + 2 = 3$, etc

Ainsi : $U_n = 3$ pour tout $n \in \mathbb{N}$: la suite (U_n) est donc constante

2)
$$V_n = U_n - 3$$
: on a: $\frac{V_{n+1}}{V_n} = \frac{U_{n+1} - 3}{U_n - 3} = \frac{\frac{1}{3}U_n + 2 - 3}{U_n - 3} = \frac{\frac{1}{3}U_n - 1}{U_n - 3} = \frac{\frac{1}{3}(U_n - 3)}{U_n - 3} = \frac{1}{3}$

donc (V_n) est une suite géométrique de raison $q = \frac{1}{3}$ et de premier terme $V_0 = U_0 - 3 = -1$

3) on a:
$$V_n = V_0 \times q^n = -\left(\frac{1}{3}\right)^n = \frac{-1}{3^n}$$
; de plus: $U_n = V_n + 3 = 3 - \frac{1}{3^n}$

. (V_n) est une suite géométrique avec 0 < q < 1 donc : $\lim_{n \to +\infty} V_n = 0$

donc (U_n) converge et $\lim_{n \to +\infty} U_n = 3$

4)
$$S_n = U_0 + U_1 + ... + U_n = (V_0 + 3) + (V_1 + 3) + ... (V_n + 3) = V_0 + V_1 + ... + V_n + 3 (n+1)$$

$$S_n = V_0 \frac{1 - q^{n+1}}{1 - q} + 3(n+1) = (-1) \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}} + 3(n+1) = -\frac{3}{2} \left[1 - \left(\frac{1}{3}\right)^{n+1}\right] + 3(n+1)$$

. problème de mathématique financière

Exo9: capital C_0 de 10 000 euros au taux annuel de 6%.

1) a) on a : I =
$$C_0 \times \frac{6}{100} = 10\ 000 \times \frac{6}{100} = 600$$
 euros d'où : $U_{n+1} = U_n + 600$

donc (U_n) est une suite arithmétique de raison r = 600 et de premier terme $U_0 = 10000$

b)
$$U_n = U_0 + nr = 10\ 000 + 600n$$

c)
$$U_{10} = 10\ 000 + 600 \times 10 = 16\ 000$$
 euros

$$U_{12} = 10\ 000 + 600 \times 12 = 17\ 200\ euros$$

2) a) on a :
$$C_1 = C_0 + \frac{6}{100} \times C_0 = C_0 \left(1 + \frac{6}{100} \right)$$
 ; $C_2 = C_1 \left(1 + \frac{6}{100} \right)$; etc

ainsi:
$$C_{n+1} = C_n \left(1 + \frac{6}{100} \right) = 1,06C_n$$

et (C_n) est une suite géométrique de raison q = 1,06 et de premier terme $C_0 = 10~000$

b)
$$C_n = C_0 \times q^n = 10\ 000 \times 1,06^n$$

c)
$$C_{10} = C_0 \times q^{10} \approx 17 908$$
 euros

$$C_{12} = C_0 \times q^{12} \approx 20 \ 122 \ euros$$

on remarque que :
$$C_{10} > U_{10}$$
 et $C_{12} > U_{12}$